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1. INTRODUCTION AND PRELIMINARIES

The points of departure of this note are a series of papers by Butzer [7],
[9], [10] who introduced the Fourier transform method and developed the
one-dimensional saturation theory, the papers of Nessel [25], [26] and Butzer
and Nessel [13] in which the corresponding n-dimensional problems were
treated, as well as a paper of the author and Nessel [21] where characterizations
of generalized derivatives were established by means of some simple results of
the theory of distributions. The essential aim of this paper is to solve the
characterization problem for saturation classes as well as to determine the
saturation classes themselves for functions of several variables by using
distribution theoretical methods. These methods enable one to treat success
fully several questions, in particular the connection between saturation classes
and the spaces of Bessel potentials, the Sobolev spaces, as well as Lipschitz
conditions and ordinary differentiability properties, and various types of
special Besov spaces which also play an important role in the theory of partial
differential equations (cf. e.g. [23]). In the two cases that are ofmost importance
concerning applications (see Sections 3 and 4) we obtain a complete set of
characterizations valid on LP(En), I < p < oc!.

Since there is an essential difference in statement and method of proof
between non-optimal approximation and optimal, i.e., the saturation-case,
the subject of this paper may be regarded as a solution of an extremal case in a
certain sense. Indeed, the theorems on non-optimal approximation for,
e.g., the singular integral of Weierstrass on E1 (cf. (1.4) for the definition) as
established by Berens [3] and Taibleson [32], and the saturation theorems for
these approximation processes (see, e.g., Butzer [7], [9] and Nessel [25], [26])
cannot be established by the same methods but are complementary to each

1 This paper contains the complete proofs of the results announced in part in a note under
the title: Characterizations of Favard classes for functions of several variables, Bull. Am.
Math. Soc. 74 (1968), 149-152. Some of these results have been presented in a lecture held
on September 13, 1967 at the annual meeting of the German Mathematical Society at
Karlsruhe. Some of these results are part of the author's doctoral dissertation written under
the direction of Prof. Dr. P. L. Butzer at the Technological University of Aachen.
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other. Correspondingly, the characterizations of Lipschitz conditions of the
type

Ilf(x + h) - f(x) IILP(E.) = O(lhl"'), Ihl --+ 0, for 0 < rx < 1,

given by Taibleson [32], do not include the theorems of Hardy-Littlewood
type which state that in case rx = I, I < p < 00, and, e.g., n = 1, the Lipschitz
condition is equivalent to the existence ofj'(x) E LP(P) (cf. Butzer [8]). From
this point of view, optimal approximation as well as the characterization
problem for saturation classes appear as extremal cases of non-optimal
approximation, in the sense that rx = I may be regarded as an extremal index for
the above Lipschitz space. It is to be noted that the methods of proof in
the extremal case are the more difficult ones.

Let P denote the Euclidean n-space of real vectors

with
n

(x, v) = L Xj Vj and Ixl = (x, X)J/2.
j=J

In the sequel, x, u, v, h will always denote n-dimensional variables, whereas
7', S, t are elements of P.

LP(P), 1 <.p < 00, denotes the space of all complex-valued functions f
having norm

Ilf(x)llp = (fE. If(x)IP dX) lip < 00,

and M(En) denotes the space of bounded measures fJ- on P with norm
11fJ-IIM == h.ldfJ-(x)l·

If I <.p <. 2, the ordinary Fourier transform of f(x) E LP(P) is defined by

{

(27T)-nl2 fE. e-i(v, X'f(x) dx, p = 1

~[f](v) =f"'(v) = (p')

l.i.m. (27T)-nl2 f e-i(v,x)f(x)dx, 1 <p <. 2 (l.l)
R ....'" Ixl";R

where !.i.m. (p') denotes the limit in U' -norm, (lIp) + (lIp') = 1.
The Fourier-Stieltjes transform of fJ- E M(P) is given by

I1.
V (v) = _1_ J e-i(v, xl dll.(X) (1.2)

r (27T)nl2 E. r'

In saturation theory on LP(P), 1 < p <. 2, the classical Fourier transform
method leads to the classes

V",P = {I(x) E LP(P); Ivl"'F'(v) =g"(v), g(x) E LP(P)} (rx>O) (1.3)

which represent saturation classes of various approximation processes defined
by singular integrals of convolution type (cf. Section 6) for specific values of rx.
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The characterization problem for the classes Va. P in the case of several
variables involves one essential difficulty (we choose ex = 2 for simplicity):
If f(x) E V2P and if, in addition, the partial derivatives of/ox}> o2f/oxl
(j = 1,2, ...,n) are assumed to exist and belong to LP, then

But there seems to be no direct way to infer, under the lone assumption
f(x) E V2P, the existence of these derivatives or of functions gix) E LP with
vlf"'(v) = g/'(v) (j = I,2, ... ,n). One result of Section 3 states thatf(x) E V2P

if and only if j).f= -g(x) E LP, provided that j).f is understood in the distri
butional sense. Moreover, one obtains that even of/oxj, o2f/oxj ox/, j, 1= 1,
2, ..., n exist as elements of LP.

In view of this result, the question arose whether there is a connection
between Va. P and the well-known Sobolev spaces for any integral ex, and
whether there is an analog for fractional ex. Affirmative answers to these
questions will be obtained, using the following procedure: At first we charac
terize Va. P by classes of Bessel potentials in order, on the one hand, to be able
to introduce distributional methods, and on the other hand, to obtain an
extension of Va.P for p > 2. These classes of Bessel potentials are, in turn,
characterized by known theorems in terms of Sobolev spaces and several
other equivalent conditions. These results then enable one to return from the
distributional setting to classical conditions, e.g., to ordinary smoothness
conditions.

There is another reason why the spaces of Bessel potentials are important
here. An attempt to extend the class Va. P from 1 < p .,;; 2 by mere interpretation
of the Fourier transform in the distributional sense is easily seen to end in
failure since even for arbitrarily smooth and rapidly decreasing functionsf(x)
the product Ivla.F'(v) cannot be defined in the distributional sense in view of
the fact that the functions Ivla. and lvi-a. do not belong to anyone of the spaces
S, S', (!)M, (!)c'. On the other hand, it is clear that the properties of the class Va.P

are determined only by the behavior of Ivi a. for large Ivi, and that any singularity
at the origin is not significant for the definition of Va.p

• Indeed, the class remains
unchanged if we replace Ivla. by the function (1 + IvI2)a./2 which has the
same behavior at infinity as Ivla. but belongs to (!)M' Thus, the new class
can also be defined for p > 2 by using the distributional Fourier transform,
and we shall see in Section 6 that it is indeed the Favard class of the
generalized singular integral of Weierstrass for p > 2 which is defined for
t, /( > O;f(x) E LP(Eft), 1 .,;;p < 00, by
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where H,lx) is given by H,/'(v) = e- 1vfK• For K = I or 2 this approximation
process reduces to the singular integrals of Cauchy-Poisson and of Gauss
Weierstrass, respectively. The singular integral (1.4) will serve as a representa
tive application of our results.

The actual aim of Section 6 is to present a distributional method in proving
saturation theorems for n-dimensional singular integrals, in particular for
the integral (1.4). The fundamental identity (6.2) will play an important role
in both directions of the theorems. The method itself may be regarded as an
immediate generalization of the functional or dual method employed in [21].

We conclude this section with a series ofdefinitions and lemmas in the theory
of distributions, the notation being that of Schwartz [28] and Friedman [19].

Let P be the set of all nonnegative integers and pn = {k EP; kj EP}. For
k E pn we define

(l.5)

and for such k we set Ikl = :Lj~l kj , called the order of the operator Dk. In
particular, we write

Here and in the sequel a j denotes the unit coordinate vector along the j-axis.
Furthermore, we define:

C<XJ(P) is the set of infinitely differentiable functions on P, all of whose
derivatives are bounded. D is that subset of functions in C<XJ(P) which have
compact support.

D' is the space of all continuous linear functionals (distributions) on D.
The action ofjE D' on rp(x) E D is written <f,rp(x». The distributional deriva
tive Dkj of jE D' is defined by <Dkf,rp(x» = (_1)lkl <f, Dkrp(x» where k E pn
and tp(x) ED.

$ = {rp(x) E C<XJ(P); SUPXEEn IxjS IDkrp(X) I< Cs,k' S EP, k E pn} is the space
of rapidly decreasing functions. A sequence {rpm(x)} E $ is said to converge in
$ to rp(x) E $ if

m .... <XJ

uniformly in x for every S EP, k E pn.
$' is the space of tempered distributions, i.e., of continuous linear func

tionals on $.
(!)M is the space of infinitely differentiable functions on P which are slowly

increasing, i.e., whose derivatives are each bounded by some power of Ixl
as Ixl ~ 00. (!)c' is the space of rapidly decreasing distributions, i.e., of distribu
tions T for which (1 + IxI 2)ST, S EP, is a "bounded distribution", thus a
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continuous linear functional on the space DL1 of those COO(E")-functions which,
together with all their derivatives, belong to U(P). ~M and ~c' are both
subspaces of $'.

Iff(x) is a locally integrable function, then

<J, qJ(x) = fEn f(x) qJ(X) dx (qJ(X) E S)

defines a distribution fED'. Distributions f of this type are called regular
distributions.

(1.6) LEMMA. If fE ~c' and g E $', then the convolution f* g, defined by

<f*g, qJ(x) = (21T)-n/2 <J, <g, qJ(x + u)) (qJ(x) E S)

(this means that g is applied to qJ(x + u) with respect to x and f is applied to
<g,qJ(x + u) with respect to u) exists as an element in $'.

The classical Fourier transform lj of (1.1) and its inverse

are continuous one-to-one mappings of $ onto $, Le., lj-l{mqJ(x)]} = qJ(x).
IffE $', the distributional Fourier transformfA is defined by

(1.7) LEMMA. The distributional Fourier transform on $' and its inverse are
continuous one-to-one mappings of$' onto $', i.e.,forf E $' one has lj-I{lj[f]} = f.

(1.8) LEMMA. The distributional Fourier transform and its inverse are continuous
one-to-one mappings of ~M onto ~c'.

(1.10) LEMMA. Iff(x) E LP(P), 1 <. p <. 2, the ordinary and the distributional
Fourier transform are equal.

(1.11) LEMMA. IfJ,g E $' andfA = gA, then <J,qJ(x) = <g,qJ(x) for every
qJ(x) E $. Iff and g are, in addition, regular distributions, then f(x) = g(x) a.e.

(1.12) LEMMA. LetfE ~c' and g E $'. Thenf" E ~M' gA E $', and

(f* g) = fAg" E $'.
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(1.l3) LEMMA. LetfE 5' and define the shifted distributionfu by

<fu, rp(x) = <f, rp(x - u).
Then

<
m-I v OVf ) <amJ )

limrv
lroJ - f - 2: ~iJV' rp(x) = a ,m'rp(x)

, ... 0 v~l v. Xj x;

(m = 1,2, ... ; rp(x) E 5).

For proofs of these lemmas and details we refer to Schwartz [28]. Finally,
we need the Taylor formula:

(1.l4) LEMMA. Letf(x) be equal a.e. to afunction F(x) which, together with
its partial derivatives up to the order m - 1 (m = 1,2, ...), is locally absolutely
continuous. Then one has a.e.

f(x + h) - f(x) =~ [(h, V)" F](x) + 1 II (1- T)m-I[(h, V)m F]
L.. v! (m - I)! 0
v ~ I

x (x + hT)dT.

2. BASIC THEOREMS

We begin with the definition and some properties of the Bessel kernel
G..(x) and of the space L~P of Bessel potentials.

(2.1) DEFINITION. Let 0: > O. The function

G..(x) = {2(2-lXl/2/r(0:/2)} (I xl /2)-(n-lXl/2 K(n-lXlnC1xl)

is called the Bessel kernel, where

~ (s/2)v+2m

Iv(s) = L.. m!r(v+m+ 1)
m~O

are the modified Bessel functions of order v of the third and the first kind,
respectively.

G",(x) is nonnegative [I8, p. 192], belongs to U(P), and

(2.2)

its Fourier transform being given by G",A(V) = (1 + IvI2)-"'/2, [2, p. 417]. For
other representations and further properties see [I, Chap. I, Section 1],
[2, pp. 413-417], [17].
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The convolution

(Go: *h)(x) = (21T)-n/2 f Go:(x - u) h(u) du
En

with hex) E LP(E"), 1 ~p < 00, is called the Bessel potential of hex). It belongs
to LP and satisfies II(Go: * h)(x)llp ~ Ilh(x)llp • In view of Go:"'(v) E (!JM' it follows
by Lemmas (1.8), (1.12) that

(Go: *h)'" = (1 + IvI 2)-0:/2 h"', (2.3)

where h'" is taken in the distributional sense.

(2.4) DEFINITION. Let IX> 0 and 1 ~p < 00. The space

Lo:P = {I(x) E LP(E");f(x) = (Go: * h)(x), hex) E LP(E")}

is called a space of Bessel potentials.
To obtain an equivalent definition, since (1 + JvI 2)0:/2 E (!JM' we may define

a distribution G_o:, IX> 0, by G:::o: = (1 + IVJ2)0:/2. By Lemma (1.8) G-o: E (!Je',
and in view of Lemma (1.6), the distributional convolution G-0: *f exists for
eachf E S' as an element ofS'. Therefore the following definition is meaningful:

L,/ = {IE S'; G-IX *f = hex) E LP(E")}.

This definition is equivalent to (2.4), as well as to

Lo:P = {I(x) E LP(£"); (1 + jvI 2)1X/2f"" = h"', hex) E LP(£n)}. (2.6)

Indeed, we note that Definition (2.4) immediately implies (2.6) which in turn
is contained in (2.5) in view of the definition of G_o: and Lemma (1.11). If
G-o: *f = hex), hex) E LP, then (GIX * (G- IX *f))(x) = (Go: * h)(x), and this is
equal tof(x) by Lemmas (1.12), (1.11). Thusf(x) = (GIX * h) (x), hex) ELI', and
this proves the equivalence of these three definitions.

As mentioned in the introduction, the definition of the class VIXP cannot be
extended for p > 2 by mere interpretation in the distributional sense. So we
must first of all restrict the characterization of VIXP to 1 < P ~ 2. The following
Lemma of Stein [30] is basic.

(2.7) LEMMA. Let IX > O. There exist measures fL~) E M(En), i = 1, 2, 3 such
that

(1 + \vI 2)1X/2 = [fL~1)]V(V) + Ivl lX [JL~2)]v(V),

Ivl lX = (1 + IvI 2)1X/2 [fL~3)]v(V).

This leads to the following fundamental

(2.8) THEOREM. Let f(x) E Lp(En), 1 < p ~ 2, and IX> O. Then f(x) E VIXI' if
and only iff(x) E LlXp.
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Proof Iff(x) E VrxP, by Lemma (1.6) we define the distribution h= G-rx *fES',
whose Fourier transform is h'" = (1 + IvJ 2)rx I2f"'(v), by Lemma (1.12). Now
Lemma (2.7) and the hypothesis yield

h'" = [fL~1)]V(v)f"'(v) + [fL~2)]v(V)g"'(v) = [f* dfL~l)r(V)+ [g * dfL~2)r(v)

by the convolution theorem of the ordinary Fourier transform. By Lemma
(Lll) we see that h is regular,

hex) = (f * dfL~l) (x) + (g * dfL~2» (x) a.e.,
and

Ilhllp < Ilfllp IIfL~I)IIM + IIgllpIlfL~)IIM'

Thus hex) E LP orf(x) E LrxP according to (2.5).
Conversely, letf(x) E Lrxp. By (2.6) and Lemma (2.7), with hex) E LP,

Ivlrxf"'(v) = [fL~3)]V(v)(1 + IVJ2)rx I2fA(V) = [fL~3)]v(v)h"'(v).

As above one obtains jvlrxf"'(v) =g"'(v) with g(x) = (h * dfL~3»(X) E LP, and
thusf(x) E Vrxp.

We mention that in casep = 2 the proofis rather simple in view ofPlanchereI's
theorem and the fact that the class of multipliers (L2, L2) consists ofall bounded
measurable functions.

With the aid of Theorem (2.8) it is now easy to make use of known results
on Sobolev spaces in order to obtain characterizations of VrxP for integral ct.

(2.9) DEFINITION. Let 1 <p < 00 and ct = 1,2, .... The space

WrxP = {f(x) E LP(P); DkfE LP(P) for every JkJ < ct},

Dkf being the distributional derivative, is called Sobolev space of order ct.

The following lemma has been shown by Calderon [17, p. 36] and Aronszajn,
Mulla and Szeptycki [1, Theorem ILl].

(2.10) LEMMA. Let ct = 1, 2, ... and 1 <p < 00. Thenf(x) E LrxP if and only if
I(x) E Wrxp.

Thus for integral ct one hasf(x) E VrxP if and only iff(x) E Wrxp.
It is the purpose of the next two sections to treat the cases when ct is even or

odd, separately and in all details.

3. THE CASE ct EVEN

This case is the simpler one, for in case ct = 2m, m E P, the class VrxP can be
extended for p > 2 by just replacing the ordinary Fourier transform by the
distributional one (since Ivl 2m E @M)' Moreover, the classes defined by
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IV 12mF' = g'" and (iv)2mf'" = gA, respectively, are identical, which suggests
that characterizations of V~m are possible by ordinary Lipschitz conditions.

We introduce the following notation:

(3.1) DEFINITION. AC'-I(LP), r = 1,2, ..., denotes the space ofthose functions
[(x) E LP(E") for which there exists a function F(x) such thatf(x) = F(x) a.e.
and F(x) together with all of its ordinary partial derivatives (D" F)(x) of order
Ikl .:;; r - 1 are locally absolutely continuous in each variable, and

(D" F) (x) E LP(E")

We first treat the case IX = 2.

for every Ikl .:;; r.

(3.2) THEOREM. Let f(x) E LP(P), 1 <p < 00. The following assertions are
equivalent:

(a) f(x) E V2P == {[(x) E LP(En); Ivl 2f'" = g"', g(x) E LP(P)} where,jorp > 2,
the Fourier transform is taken in the distributional sense;

(b) f(x) E L2P == {[(x) E LP(P); (l + IvI 2)f'" = h"',h(x) E LP(P)};

(c) f(x) E W2
P;

(d) !J.f= g(x) for afunction g(x) E LP(P), where the operator!J. is taken in
the distributional sense;

(e) f(x) E ACl(LP);

(f) the derivatives of/oxj, 02f/ox1xj exists as limits in norm, i.e.,

limllf(X + taj) - f(x) _ of (X) II = 0
t->O t oXJ P

of 1 of

1
. OXj (x + ta) - oXJ(x) 02f ( )
1m -~- x =0

t->O t ax/ OXj P
(j,I= 1,2,oo.,n);

(g) f(x) E AC°(LP), and

!!J(X + taj) - f(x) - t :~(xt = 0(t 2) (t -+ O;j = 1,2, ..., n);

(h) f(x) E Lip* (2,p; aJ)for j = 1,2, ..., n, that is

Ilf(x + 2taJ) - 2f(x + taJ) +f(x)llp = 0(t 2) (t -+ 0);

(i) f(x) E Lip (2,p), i.e.,

Ilf(x + 2h) - 2[(x + h) +f(x)ll p = 0(lhI2) (Ihl -+ 0).
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(3.3)

Proof We proceed as follows. First of all we establish the assertions
(a) => (b) => (c) => (d) => (a), then (c) => (e) => (g) => (d) and (e) => (f) => (c), and
finally (e) => (i) => (h) => (c).

(a) => (b): trivial. (b) => (c): by Lemma (2.10). (c) => (d): trivial. (d) => (a):
by Lemma (1.9). (c) => (e) :f(x) E W2

P means that the distributional derivatives
of f(x) up to the second order exist as elements of U, i.e., of/oXj = gix) and
o21/ox,oxj = h,Jx) E U for j, I = 1,2, ... , n. Now, by Lemma (1.9),
iVjr' =g/' and (iv,) (iv)f'" =hi':j' The standard proof that iVjf"'(v) =gj"'(v)
with gix) E U, 1 < p .;; 2, implies that f(x) is equal a.e. to a function F(x)
which is locally absolutely continuous in x j (cf. [25, p. 126]) can also be
employed for p > 2: Indeed, if ivjf'" = gj"', then for each <p(x) E 5

<
eiVJt

-1 )<[I(x + taj) - f(x)]"" <p(v) = . gj"', <p(v) .
W j

On the other hand, as gj(x) E U,

J: gix + saj) ds

exists as a function in U, and thus

(I: gix + saj) ds, <p"'(x) = JE. U: gix + saj) dS} <p"(x) dx.

The Theorem of Fubini can be applied, giving

([f: gix + saj)dsr, <p(v) = I: <gix + saj),<p"'(x)ds

= I: <e'VJSgj"', <p(v)ds.

In order to evaluate the latter integral we use a theorem on the integration of
distributions depending continuously upon a parameter [34, p. 76] and obtain

([f: gix + saj) dS] "', <p(v) = <e'VJi~j 1gj"', <p(V).

In view of (3.3) and Lemma (1.11) this yields for almost every x and t:

f(x + taj) - f(x) = I: gix + saj) ds. (3.4)

Now it follows by a routine argument (cf. [21, Section 5]) that there exists
an F(x) = f(x) a.e. for which this equality holds for every x and t, thus F(x)
is absolutely continuous in Xj,j = 1,2, ..., n.

For the proof that, furthermore, all partial derivatives of the first order are
absolutely continuous in each variable and that all partial derivatives of the
second order belong to LP we only have to apply the same argument to the
remaining relation (iv,)gj'" = hi': jo and (e) follows.
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(e) => (g): By Taylor's formula we have

of II o2F
f(x + taJ) - f(x) - t~ (x) = t2 (1 - T)~ (x + tTaJ) dT,

UXJ 0 UXJ

and this implies (g) by the generalized Minkowski inequality.
(g) => (d): By Lemma (1.13) we have for the distributional derivative

o2f/oxl that for each <p(x) E S

limt-2(f(X + taJ) - f(x) - t ~F (X),<P(X)=(!2<, <p(X).
t->O uXJ uXJ

On the other hand, the assumption (g) and the weak compactness of the
space LP imply the existence of a function gix) E LP and a subsequence {tr }

such that for each <p(x) E S

lim(f(X + tr aJ) - f(x) - tr ~F (x), <p(X) = <gix), <p(x),
r...,,,, uXJ

and this yields (d). (Instead of (g) => (d) one might as well have concluded
(g) => (a).)

(e) => (f): We have only to prove the second limit-relation since the first
one is a trivial consequence of (g). In the step (c) => (e) we first deduced (3.4)
from (ivJ)/'" = gJ'" which means that of/oxJ = gix) with F(x) = f(x) a.e.,
and then applied the same argument to the relation (ivl)gJ'" = h-;: J' Thus we
also obtain

of of It
~(x + tal) - ~(x) = h,.ix + sa')ds
UXJ UXJ 0

which implies (f).
The remaining steps of the proof proceed along similar lines. (f) => (c)

follows by Lemma (1.13), and (e) => (i) is a consequence of the formula

F(x + 2h) - 2F(x + h) + F(x) = tl (1 -IT!) [(h, V)2 F](x + h + hT)dT.

(i) => (h) is trivial, and (h) => (c) follows as in (g) => (d) by the weak compact
ness of LP.

Remark. The proof shows that also the following statement is equivalent
to (a):

(a') There exist functions gJ(x), hljx) E LP(P) such that

(j,/= 1,2, ...,n).

Instead of (e) we might also have used the following weaker statement:
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(e')f(x) is equal a.e. to a function F(x) which, together with its ordinary
derivatives aFjaxb is locally absolutely continuous in X j , and

aFjax j , a2Fjax/ E LP(P) (j= 1, 2, ..., n).

Note that in assertion (e') nothing is assumed about the mixed derivatives.
Theorem (3.2) gives thus a positive answer to the question raised in Section 1,

whether for instance the hypothesis f(x) E V2
P implies the existence of all

ordinary partial derivatives of f(x) up to the second order as elements of LP.
In the general case IX = 2m, m = 2, 3, ... we have the following theorem:

(3.5) THEOREM. Let f(x) E LP(En), 1 <p < 00, and IX = 2m, m = 1,2, .... The
following assertions are equivalent:

(a) f(x) E V~m == {f(x) E LP(P); Ivl 2mF' = go"., g(x) E LP(P)} where, for
p > 2, the Fourier transform is taken in the distributional sense;

(b) f(x) E L~m;

(c) f(x) E W~m;

(d) limf= g(x) for a function g(x) E LP(P), the operator lim = Ii(lim-l)
being taken in the distributional sense;

(e) f(x) E AC2m- 1(LP);

(f) all derivatives off(x) up to an order 2m exist as limits in norm,'

(g) f(x) E AC2m-2(LP), andfor t ~ O,j = 1,2, ... , n

II

2m-l v av F II
f(x + ta

j
) - f(x) - 6 ~ ax/ (x) p = O(t 2m);

(h) Ii;U(I) Ii;U(2)' .. Ii;U(mJ(x) lip = O(t 2m) (t ~ 0),

for every choice ofunit coordinate vectors a(l)' a(2)' ... , aIm)'

Proof Most of the arguments are the same as in the proof of Theorem (3.2),
so we consider only the steps which require some further explanation.

(a) => (b): the proof is the same as in Theorem (2.8).
(e) => (h): follows by repeated application of Lemma (1.14).
(h) => (a): as in step (g) => (d) of Theorem (3.2) the hypothesis and the

weak compactness of the space LP yield the existence of a sequence {tv} with
limv-+ootv = °and a function g(x) E LP depending on the special choice of
aU),j = 1, 2, ... , m such that for every <p(x) E S

lim t;2m<li;vuO) Ii;VU(2)' •• Ii;VU(3) f(x), <p(x» = <g(x), <p(x».
v ... 00
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Replacing <p(x) by <p"'(x) we obtain in view of the definition of the distributional
Fourier transform

({
eIMV. a(l) _ 1}2 {eltv<v. a<lUj) _ 1}2 )

lim .. . f"', <p(v) = <g"', <p(v).
V-HO tv tv

Now t;;l{eIMv,a(J) - I} converges to i(v,a(j)) in (JJM' thus the limit is

(<p(x) E S).

As this holds for every choice of the vectors aU)' one obtains corresponding
relations for all products of even powers ofvj,j = 1,2, ... , n, the sum of whose
exponents is 2m. Thus each term of the binomial expansion of

is the distributional Fourier transform of some function in LP, and (a) follows.
Finally we add another characterization in case Q( = 2 which we owe to a

suggestion of Berens (see also [11, p. 278]).

(3.6) THEOREM. Let f(x) E LP(P), 1 < P < 00. Then the assertions ofTheorem
(3.2) are equivalent to

(t ~ 0).

Proof The term 2:k. kJ~±tf(X + tk) represents the sum of values f(x + y)
where y runs over all 2n vertices of an n-dimensional cube with edge-length
2h centered at the origin. For brevity we write

2: [f(x + tk) - f(x)] == D f f(x).
k.kJ~±l

Let condition (e) of Theorem (3.2) be satisfied. Then by Taylor's formula

f(x + tk) - f(x) = t [(k, V) F] (x) + t 2 I~ (1 - 'T) [(k, V)2 F] (x + tTk) d'T.

Summing now over k,kj = ±l, and combining those terms whose k-values
differ only by sign, we obtain

(t ~ 0).
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Conversely, if II Dtf(x)llp = 0(t2), we have on the one hand (cf. Lemma (1.13»

lim (t-2Dtf(x), g>(x» = (/:.1, g>(x»
t .... O

(g>(x) E S),

and, on the other, by the weak compactness of U, that

lim (t;-2 DtJ(x), g>(x» = (g(x), g>(x»
r .... 00

(g>(x) E S)

for a subsequence {tr } and some g(x) E U; thus condition (d) of Theorem (3.2)
is satisfied, and the proof is complete.

4. THE CASE IX ODD

The characterizations of VaP in the case IX odd are not as simple as for IX

even since the function IvI 2m
-

1
, m = 1, 2, ... , does not belong to ~M' Here we

obtain equivalent conditions upon the Riesz transforms (Hilbert transforms)
off(x) E LP(P) defined by

fj -(x) == [HJ] (x) = lim fj~ .(x),
..... 0+

- r«n + 1)/2)f x j - uj
fj, .(x) = (n+1l/2 f(u) Ix _ u!n+l du

1T Ix-ul;;'.

In the sequel, H denotes the vector with coordinates fj - :

n

[Hf](x) = 2: fj(x)a j.
j~ 1

(4.1)

(j= 1,2,oo.,n).

(4.2)

If f(x) E U(P), 1 < p < 00, the Riesz transforms fj -(x) exist a.e. and belong
to U(En). Furthermore, fj -(x) can be represented as limit in U-norm of the
"conjugate Poisson integral" off(x):

(4.3)

where

1. _ _ . _ r«n + 1)/2) Xj
[Wt (f, u)]j (x) - (f *qj. t)(x) , qj, t(x) - 1T(n+1l/2 (t 2+ IxI2)(n+ 1l/2 (t > 0).

We mention that the conjugate Poisson kernel qj, t(x) belongs to LIl(P) for
q> 1.

Another representation offj-(x) for f(x) E LP is given by

lim IIJj-(x) -fj:".(x)llp = O.
£--+ 04-
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Further, we need the following Parseval formulas for f(x) E LP(E"),
g(x) E U"(P):

(i) f jj -(x)g(x) dx = -f f(x)gj -(x) dx,
En En

(4.4)

n

(iv) (H, H)f(x) == 2: [Hj[Hjf]] (x) = -f(x) a.e.
j ~ I

If 1 <p.;;;; 2, the ordinary Fourier transform of fj -(x) has the property

[ft](v)~= - f~V-(V) a.e.

For proofs of these statements we refer to (14], cf. also [33] and [24].

(4.5)

(4.6) LEMMA. Let f(x) E LP(P), 1 <p < 00. Then f(x) E LIP if and only if
jj -(x) E LIP for 1 .;;;;j.;;;; n.

Proof. Iff(x) E LIP' then by (2.4) there is an h(x) E LP such that

f(x) = (G I * h) (x).

Thus by Fubini's theorem

[Wt l(j; u)]j-(x) = «G I * h) * qj, t)(x) = (G I * (h *qj, t»(x)

=(G I * [Wtl(h;u)L-)(x).

For t --+ 0+ this furnishes jj -(x) = (G I * hj-)(x) with hj-(x) E LP in view of
(4.3). Thusfj-(x) E LIP for j = 1, 2, ... , n.

Conversely, by (4.4), (iv), it is sufficient to apply the same argument to
fj-(x) in order to deducef(x) E LIP.

Now we have the following characterizations of LIP.

(4.7) THEOREM. Let f(x) E LP(P), 1 <p < 00. The following statements are
equivalent:

(a) f(x) E LIP;

(b) f(x) E WIP;
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(c) (div Hi) == LL'i~ I (ali -jaxj)] E LV(P), where ajaXj means the distri-
butional derivative;

(d)Ii-(x)EAC°(LP) (j= 1,2, ... ,n);

(e) 1Iii-(x + tal) -Ii -(x)/Ip = O(ltl) (t ~ 0; j, 1= 1,2, , n);

(f) I/Ii-(x + h) - fj -(x)lip = O(lhl) (Ihl ~ O;j = 1,2, , n).
If 1 < p < 2, these statements are equivalent to:

(g) there exist functions gl./X) E LV(P),j, 1= 1,2, ..., n, such that

Proof The assertions (a) -= (b) and (a) -= (h) are valid in view of Lemma
(2.10) and Theorem (2.8), respectively. It remains to show (b) => (c) => (a),
(b) => (d) => (f) => (e) => (b), and (d) => (g) => (h).

(b) => (c): obvious in view of Lemma (4.6).

(c) => (a): We begin with the case 1 < P < 2. The hypothesis (c) states that
the individual terms of the sum L'i~ I ali -jaxj are distributions and that only
the whole sum is a regular distribution generated by a function in LV. By (4.5)
we have [Ii -]""(v) = -(ivjjlvl)f"'(v) in the classical sense. On the other hand,
if we considerfj-(x) E 5', we obtain ali-jaxj E 5' and [ali -jaxj] = ivAIi-rev).
Hence

n

[div Hfr(v) = L [afj -jaXj]" = Ivlf"'(v)
j~1

(4.8)

or f(x) E VIP, and this implies (a) by Theorem (2.8).
Now let 2 <p < 00. We have to show that f(x) = (G I * h)(x) for some
hex) E LP. We assert that

hex) = (f * dJL~1) (x) + (g * dJL~2» (x),

where g(x) = (div Hf)(x) and JL~i), i = 1,2, are the bounded measures of
Lemma (2.7). This function hex) is in LV, and for <p(x) E S, JL~I)*(x) = JL~I)(-x),

we have

«G I * h) (x), <p(x» = «G I *f* dJL~1) (x), <p(x»

+ «G I * g * dJL~2})(X), <p(x»

= <f(x), (<p * G I * dJL~1)*)(x»

+ <g(x), (<p * GI * dJL~2}*)(X» (4.9)



DISTRIBUTIONAL METHODS IN SATURATION THEORY 127

by Fubini's theorem. Setting q;(x) = (cp * G1 * df-L~2)*)(X), then also q;(x) E S,
and

[oq;!OXj]j -(x) = (oq;j-!OXj) (x)

since the Fourier transforms of both sides are equal. Thus, by (4.4),

= JI fE.!(X)[oq;!OXj]j-(X)dX= JI fE.!(X)(Oq;j-!oXj)(X)dX

= f E.!(X) {JI o!oxAcpj- * G1* df-L~2)*](X)} dx.

The last step followed by the boundedness of H j and the convolution operation
on LP, 1 <p < 1Xi. We then obtain by (4.9)

«G1 * h)(x), cp(x» = <f(x), (cp * G1 * df-L~1)*)(x)

+ ([div Hcp] * G1 * df-L~2)*) (x»

= <f(x), (G1 * H<p)(x» (cp(x) E S) (4.10)

with H<p(x) = (cp * df-L~1)*)(x) + ([div Hcp] * df-L~2)*)(X).

On the other hand, we have cp(x) ESC L1q for 1 < q <; 2 since

(1 + IvI 2)1/2cp"'(V) ES

(cf. (2.6». Thus equation (4.8) and Lemma (2.7) yield

H<p"'(v) = cp"'(v) [f-L~)ly'(-v) + Ivl cp"'(v) [f-L~2)ly'(-v)

= (1 + IvI 2)1/2cp"'(V) = [G_1 * cp]"'(v)

and (G1 * H<p)(x) = cp(x) by the definition of G_1• Therefore

«G1 * h) (x), cp(x» = <f(x), cp(x»

and sof(x) E L/.
(b) => (d): By (a) and Lemma (4.6) we haveft(x) E W1P. Therefore the

distributional derivatives ofj-!oxz = gzjx) belong to LP. Hence the first step
of the proof of Theorem (3.2), (c) => (e), applies, f(x) being replaced by
jj -(x). In particular, we obtain by (3.4), for every x and t

F(x + ta') - F(x) = t J~ gz.lx + sta') ds

where F(x) = fj -(x) a.e.
9

(4.11)
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(d) => (f): This is an immediate consequence of (4.11) since

II/hl-I{jj -(x + h) - Ij -(x)}llp = 111~1 Ihl-1{JJ -(x + V=tl hva" + hi al)

-jj - (x + i hvav)}I!
v = l+ I I:p

*Iht! JI II ( ~ I v h 1)11 d< I~ ThT 0 Igl,j X +v~f+1 Iva +s la p S

= 0(1) (Ihl -+ 0).

(f) => (e): trivial.

(e) => (b): This is proved as in step (g) => (c) of the proofof Theorem (3.2).
Finally, the steps (d) => (g) => (h) are trivial consequences of (4.5). This
proves Theorem (4.7) completely.

Remark. The following statements are also equivalent to (a):

(e') 11/(x + tal) - l(x)llp= O(ltl) (t -+ 0; / = 1,2, , n);

(ff) 11/(x+h)-f(x)llp=o(lhl) (Ihl-+0;/=1,2, ,n);

(i) the derivatives ofj -Ioxl exist as limits in norm, i.e.,

lim Ilt-l{jj-(x + tal) - Ij -(x)} - (ofj -Ioxl) (x)llp = 0
t.-;O

(j,l = 1,2, ... , n).

The proof of (e) => (e') and (f) => (f') is obvious in view of the boundedness
of the operator H j on LV for I < p < wand formula (4.4) which imply e.g.,

11/(x + tal) - l(x)llp= fiJI {[HiHjl)] (x + tal) - [HiHjl)] (X)l

n

<Ap 2 Illj-(x+tal)-.jj-(x)llp=O(ltl)
j = I

(t -+ 0),

where A p depends only on p.
The statement (d) => (i) can be shown as in step (e) => (g) of the proof of

Theorem (3.2), and (i) => (b) is trivial.
Theorem (4.7) may also be stated for the general case IX odd and the corre

sponding proofs can be carried over with suitable modifications.

5. THE GENERAL CASE IX> 0

If IX is fractional, the question arises whether e.g. an analog of Lemma (2.10)
remains true for suitable "fractional" Sobolev spaces. In general, the answer
is positive only for p = 2, and here we can use known results of Stein, Nikolskii,
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Aronszajn, Mulla and Szeptycki, Besov, and Taibleson. In the following
definitions we confine ourselves to the case p = 2. Let ex: > 0 and ex: = m + f3
with m integral and 0 <: f3 < 1. For 0 < f3 < 1, the Sobolev space Wa.2 (defined
for f3 = 0 by (2.9» is defined by

W 2 = {f(X) E W 2. [J IIDkf(x + h) - Dkf(x)lIl dh]112 < 00
a. m' E. IhI2,8+n

for every Ikl = m} .
(See e.g. [20], [29], [27, p. 60], [32], and the papers cited there.) The following
two spaces are special cases of the general Besov spaces. The space

§a..2 = {!(X) E F(P); [JE.II~i~<:]~ll dhr2 < 00 for an r> ex: > o} (5.2)

is treated in [1]. Here

~hrf(x) = .t (-I)H (:)f(X + vh).

Another type of Besov space (see [5, p. 90], [27, p. 78]) is given by

Bt 2= {!(X) E W m2; [J~ t-2,8-1 Wr+[,8l (::;, tal) dtr2 < 00

for j = 1,2, ... , oo}. (5.3)

Here the partial derivatives are taken in the distributional sense; [f3] is the
greatest integer <:f3, and

(r = 1,2).

Taibleson [32] defined the spaces

A(ex:;2,2) = {!(X) E F(P); [J: t-nlltr-a. ::r Wtl(f;X)r dtr2 < 00},(5.4)

where ex: is positive, r the smallest integer greater than ex:, and Wt 1 the Cauchy
Poisson integral defined in (1.4) (K = I).

Collecting the results of [2, pp. 74, 82], [5, p. 109], [27, pp. 63, 79], and
[32, p. 478] we have the following characterizations of La.2 for p = 2:

(5.5) LEMMA. Let f(x) E F(P), and ex: > O. Then the statements f(x) E La.2,

f(x) E Wa.2, f(x) E ma.· 2, f(x) E B~~i, and f(x) E A(ex:; 2,2) are equivalent.
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Returning now to the general case 1 < p < 00, there are not as many charac
terizations for fractional IX. For the sake of completeness we mention another
equivalent condition of Stein [30].

(5.6) LEMMA. For 0 < iX < 2 andf(x) E LP(E"), I < p < 00, the following asser-
tions are equivalent:

(a) f(x) E L~P;

(b) I
~p) ~ T«n + iX)/2) I f(x + u) - f(X)d

.l.m. n/2 T( /2) I In+~ u
.... 0+ 7T -IX lul;>o. U

exists.
For 0 < iX < 2 and 2n/(n + 2iX) < P < 00, these are,further, equivalent to

{I If(x + u) - 2f(x) + f(x - u)1 2

d
}1/2

En luln+2~ u < 00.

Combining these equivalences with the results of Sections 3 and 4 we,
furthermore, obtain for the particular cases iX = I, 2 very concrete charac
terizations of the above abstract function classes.

Equivalences between ordinary and distributional derivatives have, as far
as is known to the present author, as yet only been established by Aronszajn
and Smith [2] and A. P. Calderon [16].

Finally we note that many further interesting characterizations have been
obtained by Butzer and Berens [11] using the theory of intermediate spaces.

6. ApPLICATIONS TO SATURATION THEOREMS

In this final section we also use distributional methods in order to prove a
saturation theorem. At the same time we obtain an affirmative answer to the
question whether the class L~P, which may be regarded as an extension of
V~P for p > 2 in view of Theorem (2.8), plays the role of the saturation class
(Favard class) for the usual approximation processes of convolution type on
LP(P) also for p > 2. As a representative example we consider in detail the
generalized singular integral W/(f;x) of Weierstrass defined by (1.4). This
example is especially useful for our purpose since it contains a parameter
K > 0 which appears again in the saturation class VKP.

As mentioned in the introduction, the saturation theorem for W/(f;x)
will indeed be established by a distributional method. 2 The saturation class
will be shown to be the class LKP, also for p > 2, and therefore all the previous

2 This method, due to Dr. R. J. Nessel in the particular case a = 2 (which is very elegant),
was first presented by him in a seminar lecture held at Aachen on July 28, 1966. For a detailed
discussion see also [22, p. 15 If.].
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characterizations can be applied here, particularly in the cases K = I, 2 when
W/ reduces to the singular integrals of Cauchy-Poisson and Gauss-Weier
strass, respectively. The saturation theorem reads

(6.1) THEOREM. Letf(x) E LP(£n), 1 <p < 00, and K > O. Then

(a) II WtK(f; x) - f(x)ll p = oCt) (t ~ 0+) impliesf(x) = 0 a.e.;

(b) II WtK(f; x) - f(x) lip = OCt) (t ~ 0+) ifand only iff(x) E LKP.

For the proof we need the following

(6.2) Fundamentalldentity. Letf(x) E LKPfor fixedp, K with K > 0,1 <p < 00.

Then

~{f(x)- W/(f;X)}=~ It WTK(G_K*f* dfJ-~3);x)dT
t t 0

holds for almost every x, where fJ-~3) is the bounded measure given by Lemma
(2.7).

Proof According to (2.5) we have G-K *f = hex) E LP; thus both sides of
(6.3) exist as elements of LP. If 1 <p.;;; 2, then

[f(x) - WtK(f; x)Y'(v) = {I - e-tlvIK}f"(v),

and on the other hand

[J: WTK(G_K*f* dfJ-~3);x)dTr(v) = f: e-T1vJK(1 + IvI2yf2[jL~3)]v(V) dTf"(v),

the interchange of the Fourier transform with the integral being justified as in
[26, II, Lemma 4.1]. By Lemma (2.7) the assertion for 1 <p.;;;2 follows by
the identity

and from the uniqueness of the Fourier transform on LP.
If 2 <p < 00 and G-K*f = hrCx) E LP, then we have for every <p(x) E 5 also

<p(x) E L~' = V{ by Theorem (2.8) since 1 < p' < 2. Thus, there exists a function
g<P(x) E LP' with Ivl K<p"(v) = g"(v), which implies in view of Lemma (2.7)

Ivl K<p"(v) = (1 + IvI2yI2<p"(V)fJ-~3)(V) = [G_K* <p * dfJ-~3)Y'(V) =g<P"(v).

Therefore G-K* <p * dfJ-~3) = gtp(x) E LP' or (<p * dfJ-~3»(X) E L~', and

(<p * dfJ-~3»(X) = (GK* gtp)(x).
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With fL~3)(X) = fL~3)(-X), which is clear from the definition of fL~3), we obtain
for ep(x) E S

(I~ W/«hf * dfL(3); x) dT, ep(x» = IEn hf(x) f~ W/«ep * dfL~3); X) dT dx

= IEn hAx) I~ WTK(GK*gep;X)dTdx

= IEn (GK* hf)(x) I~ WTK(gep;x)dTdx.

So we obtain withf(x) = (GK* hf)(x)

(t-I{W/(f;x) - f(x)} - t- I f~ WTK(G_K*f* dfL~3); X)dT, ep(x»

= tJ(x) t- I {W/(ep; x) - ep(x) - I~ WTK(G_K* ep * dfL~3); x) dT} dx. (6.4)

Since 1 <p' < 2, we now obtain (6.3) by an application of the foregoing result
to ep(x) E L~.

ProofofTheorem (6.1). Iff(x) E U, the fact that

II W/(f; x) - f(x)ll" = OCt) (t ~ 0+)

holds, follows immediately by the fundamental identity (6.3).
Conversely, if this approximation holds, the weak compactness of U(P)

yields a sequence {tr } with limNoo tr = 0 and a function g(x) E U such that in
particular for every ep(x) E $

lim I t;I{f(X) - Wt~(f; x)} ep(x) dx = I g(x) ep(x) dx,
r-HO En En

and thus also

lim <f(x), t;:-l{ep(X) - Wt~(ep; x)}) = <g(x), ep(x»
r ... oo

(ep(x) E $). (6.5)

On the other hand, we have for each ep(x) E $ c L~'

t-I{ep(x) - W/(ep;x)} = t- I I: WTK(G_K* ep * dfL~3);x)dT

by (6.3). Furthermore

(1") It
l.i.m. t- I WTK(G_K* ep * dfL<,);x)dT = (G-K* ep * dfL~3»)(X),
, ... 0+ 0

and, in view of (6.5),

<f(x), (G-K* ep * dfL~3»(X» = lim(f(x), t;1 Itr WTK(G_K* ep * dfL~3); X)dT)
r~oo 0

= <g(x), ep(x».
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Now, a similar argument as in the proof of (6.3) yields

<f(x), G-K* rp * dJL~3» = <G-K*f* dJL~3),rp(X»,

thus we have for almost all x

(G-K *f * dJL~3» (x) = g(x) E U(P). (6.6)

In order to show that (G- K *f)(x) E U, we first suppose 1 <p < 2. Then

[(G-K* f * dJL~3» (x)Y'(v) = (1 + Iv1 2)K12 JL~3)v(v)r'(v) = IvIKr'(v)

by Lemma (2.7), thus IvjKF'(v) = g"(v) or f(x) E VKP. This, in turn, implies
the assertionf(x) E LKP or (G- K*f)(x) E U by Theorem (2.8).

If 2 < p < 00, we first consider rp(x) ESC Lr and apply the previous result to
rp(x). Then (G- K* rp * dJL~3»(X) E LP' and also the function he/X) defined by

hcp(x) = (G- K* rp) (x) = (rp * dJL~1) (x) + (G-K* rp * dJL~3) * dJL~2» (x)

belongs to LP' by Lemma (2.7).
In view of (6.6) we also have

hAx) = (f * dJL~1)*)(x) + (G- K*f * dJL~3) * dJL~2)*)(X) E U(P)

and it remains to show that (G-K*f)(x) = hf(x). Indeed,

«G_K*f) (x), rp(x» = <f(x), (G-K* rp) (x»

= <f(x), (rp * dJL~1) (x) + (G- K* rp * dJL~3) * dJL~2» (x»

= <(f* dJL~1)*)(x)+ (G-K*f* dJL~3) * dJL~2)*)(X),rp(x»

= <hAx), rp(x»,

and thusf(x) E LKP.
If II WtK(f; x) - f(x)ll p = o(t), t -+ 0+, then the same argument with g(x) = 0
givesf(x) = 0 a.e. This proves the Theorem.

We may also establish the corresponding results on Taylor differences for
WtK(f;X) of the type treated by Butzer and Tillmann [15], Berens [4], and
Butzer and Berens [11]. Indeed, using the same methods as above, only
replacing (6.4) by

m-l

WtK(f; x) - 2: (~?V (G- VK *f * dJL~3j) (x)
v=o

= (_l)m ft(t-T)m-lWK(G *f*dIlO)'x)dT
(m - I)! 0 T -mK ,mK'

(m= 1,2, ...),
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(6.7) THEOREM. Letf(x) E LP(£"), 1 <p < 00 andm = 1,2, .... Iff(x) E Lfm-llK'
then the following statements are equivalent:

(a) IIW/(f;X) - f(x) - ~ (~?V (G-VK * f* dfLW)(xt = O(tm)

(t -+ 0+);

(b) f(x) E L::"c

In view of Theorems (3.2), (3.5), and (4.7), the class L::'K may be suitably
characterized in case K is an integer.

Similarly one can prove the saturation theorem for the singular integral of
Bochner-Riesz defined by (cf. [26])

BRa(f; x) = 2
a
~~~n~ 1) Rn fE.J(X - u)(R!u/)-«nl2l+al](n/2)+a(R!u/)du,

where I(x) E LP(En), rx> (n - 1)/2, and R > O. If 1 <: p <: 2, we also have the
representation

B a(f'x) =_1_ f (1_l'f)af "-(v)ei(V, Xl dV
R' (27T)n/2 Ivl<;R R2 .

(6.8) THEOREM. Letf(x) E LP(£"), and rx> (n - 1)/2 +p, 1 < p < 00. Then

(a) IIBRa(f; x) - f(x)ll" = o(R2), R -+ 00, impliesf(x) = 0 a.e.

(b) IIBRa(f; x) - f(x)ll" = O(R2), R -+ 00, ifand only iff(x) E L2P.

Many further singular integrals can be treated by the same method, and the
saturation class is always one of the spaces LKP.

A paper by M. Kozima and G. Sunouchi: On the Approximation and Sat
uration by General Singular Integrals (in print) was drawn to the author's
attention. It treats a functional method for establishing saturation theorems
of the type considered in Section 6 of this paper and is similar to our method.
For the origin of the method see also Footnote 2 of Section 6.
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